15,886 research outputs found

    Translation invariant topological superconductors on lattice

    Full text link
    In this paper we introduce four Z_2 topological indices zeta_k=0,1 at k=(0,0), (0,pi), (pi, 0), (pi, pi) characterizing 16 universal classes of 2D superconducting states that have translation symmetry but may break any other symmetries. The 16 classes of superconducting states are distinguished by their even/odd numbers of fermions on even-by-even, even-by-odd, odd-by-even, and odd-by-odd lattices. As a result, the 16 classes topological superconducting states exist even for interacting systems. For non-interacting systems, we find that zeta_k is the number of electrons on k=(0,0), (0,pi), (pi, 0), or (pi,pi) orbitals (mod 2) in the ground state. For 3D superconducting states with only translation symmetry, there are 256 different types of topological superconductors.Comment: 4 pages, RevTeX

    Quantum Field Theory Description of Tunneling in the Integer Quantum Hall Effect

    Full text link
    We study the tunneling between two quantum Hall systems, along a quasi one-dimensional interface. A detailed analysis relates microscopic parameters, characterizing the potential barrier, with the effective field theory model for the tunneling. It is shown that the phenomenon of fermion number fractionalization is expected to occur, either localized in conveniently modulated barriers or in the form of free excitations, once lattice effects are taken into account. This opens the experimental possibility of an observation of fractional charges with internal structure, close to the magnetic length scale. The coupling of the system to external gauge fields is performed, leading us to the exact quantization of the Hall conductivity at the interface. The field theory approach is well supported by a numerical diagonalization of the microscopic Hamiltonian.Comment: 34 pages, PUPT-1468. (3 figures available upon resquest to the authors at [email protected] or [email protected]

    Macroscopic Quantum Tunneling Effect of Z2 Topological Order

    Full text link
    In this paper, macroscopic quantum tunneling (MQT) effect of Z2 topological order in the Wen-Plaquette model is studied. This kind of MQT is characterized by quantum tunneling processes of different virtual quasi-particles moving around a torus. By a high-order degenerate perturbation approach, the effective pseudo-spin models of the degenerate ground states are obtained. From these models, we get the energy splitting of the ground states, of which the results are consistent with those from exact diagonalization methodComment: 25 pages, 14 figures, 4 table
    corecore